Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]
Таким образом можно добиться сильного уменьшения зависимости характеристик схемы от колебаний внешней температуры. Для прецизионной схемотехники представляет интерес метод помещения хорошо температурно-компенсированного опорного источника в условия постоянной температуры, что значительно улучшает его характеристики.
Подобная техника температурно-стабилизированных или «термостатированных» схем применяется уже много лет, в частности для создания сверхстабильных генераторов. Существуют не слишком дорогие источники питания и опорные источники напряжения, в которых используются термостатированные опорные схемы. Этот метод дает хорошие результаты, но имеет свои недостатки: громоздкость и сравнительно большую потребляемую нагревателем мощность, а также медленный разогрев и выход на режим (обычно 10 или более минут). Эти проблемы легко снять, если стабилизировать температуру на уровне кристалла ИМС (чипа) включением нагревательной схемы вместе с датчиком в состав самой интегральной схемы. Этот подход был впервые опробован в 60-х годах фирмой Fairchild, выпустившей температурно-стабилизированную дифференциальную пару μΑ726 и предусилитель постоянного тока μΑ727.
Позже появились «термостатированные» источники опорных напряжений, такие, как серия National LM199. ИМС этой серии имеют температурный коэффициент (типовое значение) 0,00002 %/°С, или 2·10-7/°С. Такие опорные источники установлены в стандартных транзисторных корпусах ТО-46. Их нагреватели потребляют мощность 0,25 Вт и разогреваются до нужной температуры за 3 с. Пользуясь этими схемами, следует отдавать себе отчет в том, что последующие схемы на операционных усилителях, и даже проволочные прецизионные резисторы с их температурным коэффициентом ±2,5·10-6/°С, могут сильно испортить характеристики, если при проектировании не принять крайних мер предосторожности. В частности, приходится учитывать даже дрейф прецизионных ОУ с очень низким уровнем дрейфа, таких, как ОР-07, с типовым значением дрейфа входного каскада 0,2 мкВ/°С. Эти аспекты проектирования прецизионных схем рассматриваются в гл. 7 в разд. 7.01-7.06.
При использовании LM399 существует одна опасность: чип может выйти из строя, если напряжение питания нагревателя хотя бы на короткий момент времени упадет ниже 7,5 В. Источник опорного напряжения с запрещенной зоной LT1019 хотя и работает в нормальных условиях без подогрева, однако имеет встроенные в кристалл нагреватель и датчик. Поэтому его можно включать так же, как и LM399, получая температурный коэффициент менее 2·10-6/°С. Однако в отличие от LM399 для LT1019 требуется некоторая внешняя схемная обвязка, чтобы получить термостат (ОУ и с полдюжины элементов).
2. Прецизионные источники опорного напряжения без подогрева. Термостатированная LM399 имеет превосходный температурный коэффициент, однако она не демонстрирует чего-либо экстраординарного в отношении таких параметров, как шум или долговременный дрейф (см. табл. 6.7). Кроме того, нагрев этого кристалла занимает несколько секунд и он потребляет большую мощность (4 Вт при включении, 250 мВт после стабилизации). Хитроумные разработчики сделали возможным создание источников опорного напряжения с эквивалентной стабильностью, но без подогрева. ИМС REF10KM и REF101KM фирмы Burr-Brown имеют температурный коэффициент 10-6/°С (макс), они не потребляют мощность для подогрева и у них нет задержки выхода на режим за счет нагрва. Кроме того, долговременный дрейф и шум у них меньше, чем у источников типа LM399. Среди других трехвыводных источников опорного напряжения с температурным коэффициентом не более 10-6/°С — МАХ671 фирмы Maxim и AD2710 или AD2712, выпускаемые фирмой Analog Devices. В двухвыводной конфигурации есть лишь один достойный соперник - это великолепный LTZ1000 фирмы Linear Technology, у которого заявленный температурный коэффициент составляет 0,05·10-6/°С. В спецификации на это устройство указаны также на порядок лучшие характеристики по долговременной стабильности и шуму, чем у любых других источников опорного напряжения любого типа. Для ИМС LTZ1000 требуется хорошая внешняя схема смещения, которую можно построить на ОУ и еще нескольких элементах. Во всех перечисленных высокостабильных источниках опорного напряжения (включая LM399 с подогревом) используются стабилитроны с захороненным слоем, что дополнительно обеспечивает намного меньший шум, чем обычные стабилитроны или UБЭ-стабилитроны (рис. 6.27).
Рис. 6.27. Сравнение напряжения шумов стабилитронов с захороненным слоем (а), стабилитронов с подогревом (б) и источников опорного напряжения на UБЭ-стабилитроне (в). (С разрешения Burr-Brown Corporation).
Сравнение плотности шумов еш (г) и интегрального напряжения шума (д) стабилитронов указанных типов.
Трехвыводные и четырехвыводные стабилизаторы
Для большинства не слишком ответственных применений лучше выбрать простой трехвыводной стабилизатор напряжения. Он имеет всего три внешних вывода (вход, выход и земля) и настраивается изготовителем на нужное фиксированное напряжение. Типичные представители стабилизаторов такого рода — серия 7800. Их напряжение указывается в последних двух цифрах (вместо нулей) и может иметь одно из следующих значений: 05, 06, 08, 10, 12, 15, 18, 24. На рис. 6.28 показано, как легко сделать стабилизатор, например на 5 В с применением одной из этих схем.
Рис. 6.28.
Конденсатор, поставленный параллельно выходу, улучшает переходные процессы и удерживает полное выходное сопротивление на низком уровне при высоких частотах (если стабилизатор расположен на значительном расстоянии от конденсатора фильтра, следует применить дополнительный входной конденсатор емкостью по крайней мере 0,33 мкФ). Серия 7800 выпускается в пластмассовых и металлических корпусах, в таких же, как и мощные транзисторы. Маломощный вариант, серия 78L00 также выпускается в пластмассовых и металлических корпусах, в которых выпускаются маломощные транзисторы (табл. 6.8).
Серия 7900 стабилизаторов отрицательных напряжений работает точно так же, но, конечно, с отрицательным входным напряжением. Серия 7800 обеспечивает ток нагрузки до 1 А и снабжена внутренней защитой от повреждений в случае перегрева или чрезмерного тока нагрузки (ИМС не сгорает, а выключается). Кроме того, предусмотрена защита прибора при выходе из области безопасной работы (разд. 6.07) за счет уменьшения предельно возможного вых. тока при увеличении разности входного и выходного напряжений. Такие стабилизаторы дешевы и просты в употреблении; это делает реальным проектирование схем с большим количеством печатных плат, к которым подводится нестабилизированное постоянное напряжение, а отдельный стабилизатор устанавливается на каждой плате.
Трехвыводные стабилизаторы с фиксированным напряжением выпускаются в нескольких очень удобных вариантах. LP2950 работает точно так, как и 7805, но потребляет в установившемся режиме всего лишь 75 мкА (сравните с 5 мА у 7805 или 3 мА у 78L05); кроме того, он не теряет способности стабилизации даже тогда, когда перепад напряжений (нестабилизированного на входе и стабилизированного на выходе) составляет всего лишь 0,4 В (сравните с 2 В перепада напряжений, необходимыми для классической ИМС 7805). У LM2931 также низкий перепад напряжений, но его можно было бы назвать миллимощным (ток покоя 0,4 мА) в сравнении «микромощным» LP2950. Стабилизаторы с низким перепадом напряжения выпускаются также и на большие токи, например, серии LT1085/4/3 фирмы LTC (3 А, 5 А и 7,5 А соответственно, у каждого типа есть ИМС на +5 и +12 В). Такие стабилизаторы, как LM2984, в основе своей трехвыводные с фиксированным напряжением, но с дополнительными выводами для сигнализации микропроцессору о том, что питание пропало и вновь появилось. И наконец, такие ИМС, как 4195, состоят из двух трехвыводных стабилизаторов на 15 В, один на положительное, другой — на отрицательное напряжение. Вскоре мы поговорим об этих специальных стабилизаторах подробнее.
6.17. Трехвыводные регулируемые стабилизаторы
Иногда нам нужно нестандартное стабилизированное напряжение (скажем, +9 В, чтобы заменить таким образом батарею) и мы не можем по этой причине применить фиксированный стабилизатор серии 7800. Или, возможно, вам требуется стандартное напряжение, но устанавливаемое более точно, чем ±3 %, типично предусматриваемые в стабилизаторах с фиксированным напряжением. Но теперь вы уже «подогреты» простотой трехвыводных стабилизаторов и уже не представляете себе, как можно иметь дело со схемами стабилизатора на ИМС 723 со всеми внешними элементами, которые для нее требуются. Что делать? Взять «трехвыводной регулируемый стабилизатор»! В табл. 6.9 перечислены характеристики представительной выборки трехвыводных регулируемых стабилизаторов.